
IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 16

OBJECT-ORIENTED FRAMEWORK FOR SPECIFIC

ARCHITECTURE OF SOFTWARE

Dr. Narendra Kumar Sharma

Assistant Professor, Department of Computer Science and Engineering,
Sanskriti University, Mathura, Uttar Pradesh, India

Email Id- narendra@sanskriti.edu.in

ABSTRACT

Architectural understanding has played a part in discussion on design, reuse, and adaptation
for over a decade. The phrase has gained a lot of popularity in recent years, and efforts are
being made to determine specific what is meant by architectural knowledge. The latest
developments in architectural performance management are covered in this chapter.
Following the results of a thorough literature study, we present four major perspectives on
architectural knowledge. We describe major kinds of architectural knowledge and analyses
four different outcomes for the business that have their roots in the abovementioned views,
all of which are based on software architecture and knowledge organizational theory. State-
of-the-art approaches take a more comprehensive stance and integrate various viewpoints in a
single architectural knowledge management approach, in contrast with traditional
approaches, which were limited to a single metaphysics when it came to tools, methods, and
methodologies for architectonic performance management.

KEYWORDS: Computer Software, IoT, Optical Sensors, Sensors, Wireless Sensors.

INTRODUCTION

Object-oriented frameworks are application skeletons, which reflect the basic characteristics
of a particular application domain. When developing applications from such a domain, it will
probably be more efficient to use such a framework rather than to start from scratch. A
framework is a kind of ‘instant program’, that sometimes even may be a complete, ready-to-
run application, but it will normally allow you to customize its look and feel to your own
taste. Object-oriented frameworks is an attempt to capture the common characteristics within
a certain application domain, and make them available for reuse. Only those characteristics
that are common are hardwired into the code. Therefore, users of a framework are still free to
handicraft those parts that give their applications the individual touch. The first more
commonly used framework was the Model-View-Controller framework found in the
Smalltalk-80 user interface. It allowed users to connect different visual presentations to the
state of a Model object. These Views were automatically notified each time the state was
changed, and were able to ask the Model for the new values of the properties they were
representing[1].

A change in the Model object were thus immediately reflected on the screen. Today,
frameworks are considered a very promising technology for reifying proven software designs,
targeting particular functionality’s such that the user interfaces and operating systems and
particular application domains such that fire-alarm systems and real time avionics.
Frameworks like MacApp; ET++; Interviews; ACE; Microsoft’s MFC and DCOM;
JavaSoft’s RMI, AWT and Beans; OMG’s CORBA play an increasingly important role in
contemporary software development. Early Frameworks were normally monolithic, i.e.,
object-oriented software architectures making up an entire application within some specific

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 17

domain, but later versions are also restricting themselves to various subsystems. Due to the
fact that these smaller frameworks are serving the role as design elements, they may seem to
coincide with the Design Pattern concept, as specified in. There is, however, an important
difference between the two, because these smaller grained frameworks still contain
executable code, while design patterns are merely codeless descriptions of how to implement
certain features. In addition, patterns are more universal tool in the sense that they are
normally not tied to a particular application domain[2], [3].

Domain-Specific Development Environment

A domain-specific development environment (DSDE) supports the application development
based on a DSSA. A DSDE has its own architecture that usually has three levels.

i. Productivity Tools

On top of a formal component model, there are a number of tools that facilitate a convenient
application development, e.g., cogitation editors, semantic checkers, component repositories,
generators, etc. An important tool is the constraint checker. Possible approaches to checking
design constraints include attribute grammars, temporal logic, and a special type of first order
logic.

ii. Formal Component Model

The formal component model is defined through the reference architecture and lies at the
heart of a DSDE. The mapping of an application architecture onto the underlying layer is
done by a generator. One has to decide whether to use compositional or transformational
generator technology.

iii. Support Frameworks

Support frameworks implement the application component model. Both the frameworks and
the reference architecture could be developed at the same time on an evolutionary basis.
Support frameworks could already be portable, which would simplify the generation process.
A critical aspect of the design for any large software system is its gross structure represented
as a high-level organization of computational elements and interactions between those
elements. Broadly speaking, this is the software architectural level of design. The structure of
software has long been recognized as an important issue of concern. However, recently
software architecture has begun to emerge as an explicit field of study for software
engineering practitioners and researchers. Evidence of this trend is apparent in a large body
of recent work in areas such as module interface languages, domain specific architectures,
architectural description languages, design patterns and handbooks, formal underpinnings for
architectural design, and architectural design environments.

What exactly do we mean by the term software architecture? As one might expect of a field
that has only recently emerged as an explicit focus for research and development, there is
currently no universally-accepted definition. Moreover, if we look at the common uses of the
term architecture in software, we find that it is used in quite different ways, often making it
difficult to understand what aspect is being addressed. Among the various uses are is that the
architecture of a particular system, as in the architecture of this system consists of the
following components and an architectural style, as in this system adopts a client-server

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 18

architecture and the general study of architecture, as in \the papers in this journal are about
architecture.

As definitions go, this is not a bad starting point. But definitions such as this tell only a small
part of the story. More important than such explicit definitions, is the locus of effort in
research and development that implicitly has come to define the field of software
architecture. To clarify the nature of this effort it is helpful to observe that the recent
emergence of interest in software architecture has been prompted by two distinct trends. The
first is the recognition that over the years designers have begun to develop a shared repertoire
of methods, techniques, patterns and idioms for structuring complex software systems[4], [5].

For example, the box and line diagrams and explanatory prose that typically accompany a
high-level system description often refer to such organizations as a pipeline," a blackboard-
oriented design or a client-server system. Although these terms are rarely assigned precise
definitions, they permit designers to describe complex systems using abstractions that make
the overall system intelligible. Moreover, they provide significant semantic content that
informs others about the kinds of properties that the system will have: the expected paths of
evolution, its overall computational paradigm, and its relationship to similar systems.

The second trend is the concern with exploiting specific domains to provide reusable
frameworks for product families. Such exploitation is based on the idea that common aspects
of a collection of related systems can be extracted so that each new system can be built at
relatively low cost by instantiating the shared design. Familiar examples include the standard
decomposition of a compiler which permits undergraduates to construct a new compiler in a
semester, standardized communication protocols which allow vendors to interoperate by
providing services at different layers of abstraction, fourth-generation languages which
exploit the common patterns of business information processing, and user interface toolkits
and frame- works which provide both a reusable framework for developing interfaces and
sets of reusable components, such as menus, and dialogue boxes.

Generalizing from these trends, it is possible to identify four salient distinctions:

i. Focus of Concern

The first distinction is between traditional concerns about design of algorithms and data
structures, on the one hand, and architectural concerns about the organization of a large
system, on the other. The former has been the traditional focus of much of computer science,
while the latter is emerging as a significant and different design level that requires its own
notations, theories, and tools. In particular, software architectural design is concerned less
with the algorithms and data structures used within modules than with issues such as gross
organization and global control structure; protocols for communication, synchronization, and
data access; assignment of functionality to design elements; physical distribution;
composition of design elements; scaling and performance; and selection among design
alternatives.

ii. Nature of Representation

The second distinction is between system description based on definition use structure and
architectural description based on graphs of interacting components. The former modularizes
a system in terms of source code, usually making explicit the dependencies between use sites
of the code and corresponding definition sites. The latter modularizes a system as a graph, or

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 19

configuration, of components and connectors. Components define the application-level
computations and data stores of a system. Examples include clients, servers, filters,
databases, and objects. Connectors define the interactions between those components. These
interactions can be as simple as procedure calls, pipes, and event broadcast, or much more
complex, including client-server protocols, database accessing protocols, etc.

iii. Instance Versus Style

The third distinction is between architectural instance and architectural style. An architectural
instance refers to the architecture of a specific system. Box and line diagrams that accompany
system documentation describe architectural instances, since they apply to individual
systems. An architectural style, however, defines constraints on the form and structure of a
family of architectural instances. For example, a pipe and filter architectural style might
define the family of system architectures that are constructed as a graph of incremental
stream transformers. Architectural styles prescribe such things as a vocabulary of components
and connectors (for example, filters and pipes), topological constraints (for example, the
graph must be acyclic), and semantic constraints (for example, filters cannot share state).
Styles range from abstract architectural patterns and idioms (such as \client-server" or
\layered" organizations), to concrete \reference architectures" (such as the ISO OSI
communication model or the traditional linear decomposition of a compiler).

iv. Design Methods versus Architectures

A fourth distinction is between software design methods such as object-oriented design,
structured analysis, and JSD and software [6], [7]architecture. Although both design methods
and architectures are concerned with the problem of bridging the gap between requirements
and implementations, there is a significant difference in their scopes of concern. Without
either software design methods or a discipline of software architecture design, the
implementer is typically left to develop a solution using whatever ad hoc techniques may be
at hand. Design methods improve the situation by providing a path between some class of
system requirements and some class of system implementations. Ideally, a design method
defines each of the steps that take a system designer from the requirements to a solution. The
extent to which such methods are successful often depends on their ability to exploit
constraints on the class of problems they address and the class of solutions they provide. One
of the ways they do this is to focus on certain styles of architectural design. For example,
object-oriented methods usually lead to systems formed out of objects, while others may lead
more naturally to systems with an emphasis on data flow. In contrast, the field of software
architecture is concerned with the space of architectural designs. Within this space object-
oriented and data ow structures are but two of the many possibilities. Architecture is
concerned with the trade-offs between the choices in this space the properties of different
architectural designs and their ability to solve certain kinds of problems. Thus design
methods and architectures complement each other: behind most design methods are preferred
architectural styles, and different architectural styles can lead to new design methods that
exploit them.

LITERATURE REVIEW

D. Le et al. stated that the Object-oriented domain-driven design (DDD) aims to iteratively
develop software around a realistic model of the application domain, which both thoroughly
captures the domain requirements and is technically feasible for implementation. The main

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 20

focus of recent work in DDD has been on using a form of annotation-based domain specific
language (aDSL), internal to an object-oriented programming language, to build the domain
model. However, these works do not consider software modules as first-class objects and thus
lack a method for their development. In this chapter, we tackle software module development
with the DDD method by adopting a generative approach that uses aDSL. To achieve this, we
first extend a previous work on module-based software architecture with three enhancements
that make it amenable to generative development. We then treat module configurations as
first-class objects and define an aDSL, named MCCL, to express module configuration
classes. To improve productivity, we define function MCCGEN to automatically generate
each configuration class from the module's domain class. We define our method as a
refinement of an aDSL-based software development method from a previous work. We apply
meta-modelling with UML/OCL to define MCCL and implement MCCL in a Java software
framework. We evaluate the applicability of our method using a case study and formally
define an evaluation framework for module generativist. We also analyse the correctness and
performance of function MCCGEN. MCCL is an aDSL for module configurations. Our
evaluation shows MCCL is applicable to complex problem domains. Further, the MCCs and
software modules can be generated with a high and quantifiable degree of automation.
Conclusion: Our method bridges an important gap in DDD with a software module
development method that uses a novel aDSL with a module-based software architecture and a
generative technique for module configuration[8], [9].

B. Alshemaimri et al. stated that the Database code fragments exist in software systems by
using Structured Query Language (SQL) as the standard language for relational databases.
Traditionally, developers bind databases as back ends to software systems for supporting user
applications. However, these bindings are low‐level code and implemented to persist user
data, so Object Relational Mapping (ORM) frameworks take place to database access details.
Both approaches are prone to problematic database code fragments that negatively impact the
quality of software systems. We survey problematic database code fragments in the literature
and examine antipatterns that occur in low‐level database access code using SQL and high‐
level counterparts ORM frameworks. We also study problematic database code fragments in
different and popular software architectures such as Service‐Oriented Architecture,
Microservice Architecture, and Model View Controller. We create a novel categorization of
both SQL schema and query antipatterns in terms of performance, maintainability,
portability, and data integrity. This article reviews database antipatterns including SQL
antipatterns and framework‐specific antipatterns in terms of their impact on nonfunctional
requirements such as performance, maintainability, portability, and data integrity.

M. Ghareb et al. stated that explores a new framework for calculating hybrid system metrics
using software quality metrics aspect-oriented and object-oriented programming. Software
metrics for qualitative and quantitative measurement is a mix of static and dynamic software
metrics. It is noticed from the literature survey that to date, most of the architecture
considered only the evaluation focused on static metrics for aspect-oriented applications. In
our work, we mainly discussed the collection of static parameters, long with AspectJ-specific
dynamic software metrics. The structure may provide a new direction for research while
predicting software attributes because earlier dynamic metrics were ignored when evaluating
quality attributes such as maintainability, reliability, and understandability of Asepect
Oriented software. Dynamic metrics based on the fundamentals of software engineering are

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 21

equally crucial for software analysis as are static metrics. A similar concept is borrowed with
the introduction of dynamic software metrics to implement aspect-riented software
development. Currently, we only propose a structure and model using static and dynamic
parameters to test the aspect-oriented method, but we still need to validate the proposed
approach[10], [11].

M. Amor et al. illustrated that the production of maintainable and reusable agents depends
largely on how well the agent architecture is modularized. Most commercial agent toolkits
provide an Object-Oriented (OO) framework, whose agent architecture does not facilitate
separate (re)use of the domain-specific functionality of an agent from other concerns. This
paper presents Mala, an agent architecture that combines the use of Component-based
Software Engineering and Aspect-Oriented Software Development, both of which promote
better modularization of the agent architecture while increase at the architectural level.
Malaca supports the separate (re)use of the domain-specific functionality of an agent from
other communication concerns, providing explicit support for the design and configuration of
agent architectures and allows the development of agent-based software so that it is easy to
understand, maintain and reuse.

R. Taylor et al. stated that the objective of software development using domain-specific
software architectures (DSSA) is reduction in time and cost of producing specific application
systems within a supported domain, along with increased product quality, improved
manageability, and positioning for acquisition of future business. Key aspects of the approach
include software reuse based on parameterization of generic components and interconnection
of components within a canonical solution framework. Viability of the approach depends on
identification and deep understanding of a selected domain of applications. The DSSA
approach, to be effectively applied, requires a variety of support tools, including repository
mechanisms, prototyping facilities, and analysis tools. This curriculum module describes the
DSSA approach, representative examples, supporting tools, and processes.

B. Belhomme et al. illustrated that the completely new ray tracing software has been
developed at the German Aerospace Center. The main purpose of this software is the flux
density simulation of heliostat fields with a very high accuracy in a small amount of
computation time. The software is primarily designed to process real sun shape distributions
and real highly resolved heliostat geometry data, which means a data set of normal vectors of
the entire reflecting surface of each heliostat in the field. Specific receiver and secondary
concentrator models, as well as models of objects that are shadowing the heliostat field, can
be implemented by the user and be linked to the simulation software subsequently. The
specific architecture of the software enables the provision of other powerful simulation
environments with precise flux density simulation data for the purpose of entire plant
simulations. The software was validated through a severe comparison with measured flux
density distributions. The simulation results show very good accordance with the measured
results.

R. Tu et al. illustrated that the Virtual Enterprise model affords the valid instruction for rapid
establishing and successful running of Virtual Enterprise. However, authors perceive that low
quality and low efficiency are serious restriction factor to the development of Virtual
Enterprise model. In order to overcome above-mentioned embarrassment in Virtual
Enterprise modeling, authors put forward applying software reuse technology and Domain

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 22

Engineering theory to establishing the Domain Specific Software Architecture of Virtual
Enterprise, then develop application system and establish the reusable component library in
terms of Domain Specific Software Architecture of Virtual Enterprise. On the one hand, the
quality and efficiency of modeling can be promoted remarkably. On the other hand, the
model of Virtual Enterprise can be reused in the same domain.

J. Zhu et al. illustrated that the rapid development of technology, software is rapidly evolving
with emerging applications. Chips that fail to adapt to software such that the application-
specific integrated circuits, ASICs suffer from a short lifecycle and high nonrecurring
engineering (NRE) costs. Meanwhile, as the projection of Moore's law and Dennard scaling
are decreasing, energy efficiency has shown a diminishing return with new technologies. The
computing capacity of general-purpose processors is limited due to power budgets.
Consequently, future chips must jointly optimize flexibility, power efficiency, and ease of
programmability. Reconfigurable chips combine the high flexibility of a general-purpose
processor and high energy efficiency of ASIC by providing on-demand customization of their
architectures. This article thoroughly reviews the development and architecture of
reconfigurable chips. Moreover, the future challenges of reconfigurable chips are analyzed.
Based on these challenges, future directions are also discussed.

B. Senyapj et al. ststed that the Interior architectural education and practice employ various
general-purpose software packages. This study problematizes that as none of these packages
is developed specifically for interior architectural design process and purposes, both interior
architecture education and market seek ways to fulfill their specific needs. It is argued that
currently interior architecture does not fully benefit from digital opportunities. A specific
software package for interior architecture will enable the discipline to put forth its assets and
manifest its existence. Consequently, this study proposes a domain specific model for interior
architectural software. Initially, general-purpose and domain specific computer aided
architectural design (CAAD) software used in interior architecture are determined. Then,
selected software packages are analyzed according to Szalapaj's set of features: 'drawing',
'transformation', 'view', 'rendering' and 'other'. Based on these analyses, domain specific
requirements for interior architecture are obtained. Consequently, questionnaires and
interviews are performed with interior architectural students and professionals in order to
determine the user needs. Finally, based on the findings, a software model for interior
architecture is proposed.

A. Gopalakrishnan et al. illustrated that the Software Engineering has evolved over many
years but stays human centric as it relies significantly on the technical decisions made by
humans. Modeling the problem statement and arriving at the architecture and design revolves
in the minds of software architects and designers. Many of the decisions stays in architect's
minds and are only present in the models. The abstraction structures in software design are
deeper than in other disciplines, since the final design is program code. This distinction leads
to software architecture and design a highly interwoven process. The early design decisions
are otherwise termed architectural decisions which compose software architecture. The
architectural decisions are at an intermediate abstraction level with higher probability of
reuse, but still not effectively reused even within the same organization. The most effective
cases of reuse in software is with architecture patterns and design patterns. The paper points
to the fact that patterns are successfully reused due to the quality of the descriptions which
include problem, solution pair and supporting example. The paper focuses on intra-

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 23

organizational reuse, based on Domain Specific Software Architectures and the descriptions
containing domain model, decision trees, architectural schema and rationale. It further tries to
analyze three different use cases in the light of these elements and analyze if major hindrance
of reuse is 'Rationale of decisions not well understood' than the commonly stated 'Not
Invented here', supported with a survey of software engineers.

R. Weinreich et al. stated that the Software architecture is a central element during the whole
software life cycle. Among other things, software architecture is used for communication and
documentation, for design, for reasoning about important system properties, and as a
blueprint for system implementation. This is expressed by the software architecture life cycle,
which emphasizes architecture-related activities like architecture design, implementation, and
analysis in the context of a software life cycle. While individual activities of the software
architecture life cycle are supported very well, a seamless approach for supporting the whole
life cycle is still missing. Such an approach requires the integration of disparate information,
artifacts, and tools into one consistent information model and environment. In this article we
present such an approach. It is based on a semi-formal architecture model, which is used in
all activities of the architecture life cycle, and on a set of extensible and integrated tools
supporting these activities. Such an integrated approach provides several benefits. Potentially
redundant activities like the creation of multiple architecture descriptions are avoided, the
captured information is always consistent and up-to-date, extensive tracing between different
information is possible, and interleaving activities in incremental development and design are
supported.

O. Pedreira et al. illustrated that the gamification has been applied in software engineering to
improve quality and results by increasing people's motivation and engagement. A systematic
mapping has identified research gaps in the field, one of them being the difficulty of creating
an integrated gamified environment comprising all the tools of an organization, since most
existing gamified tools are custom developments or prototypes. In this paper, we propose a
gamification software architecture that allows us to transform the work environment of a
software organization into an integrated gamified environment, i.e., the organization can
maintain its tools, and the rewards obtained by the users for their actions in different tools
will mount up. We developed a gamification engine based on our proposal, and we carried
out a case study in which we applied it in a real software development company. The case
study shows that the gamification engine has allowed the company to create a gamified
workplace by integrating custom-developed tools and off-The-shelf tools such as Redmine,
TestLink, or JUnit, with the gamification engine. Two main advantages can be highlighted:
(i) our solution allows the organization to maintain its current tools, and (ii) the rewards for
actions in any tool accumulate in a centralized gamified environment.

C. Venters et al. ststed that the Context Modern societies are highly dependent on complex,
large-scale, software-intensive systems that increasingly operate within an environment of
continuous availability, which is challenging to maintain and evolve in response to the
inevitable changes in stakeholder goals and requirements of the system. Software
architectures are the foundation of any software system and provide a mechanism for
reasoning about core software quality requirements. Their sustainability the capacity to
endure in changing environments is a critical concern for software architecture research and
practice. Problem Accidental software complexity accrues both naturally and gradually over
time as part of the overall software design and development process. From a software

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 24

architecture perspective, this allows several issues to overlap including, but not limited to: the
accumulation of technical debt design decisions of individual components and systems
leading to coupling and cohesion issues; the application of tacit architectural knowledge
resulting in unsystematic and undocumented design decisions; architectural knowledge
vaporization of design choices and the continued ability of the organization to understand the
architecture of its systems; sustainability debt and the broader cumulative effects of flawed
architectural design choices over time resulting in code smells, architectural brittleness,
erosion, and drift, which ultimately lead to decay and software death. Sustainable software
architectures are required to evolve over the entire lifecycle of the system from initial design
inception to end-of-life to achieve efficient and effective maintenance and evolutionary
change. Method This article outlines general principles and perspectives on sustainability
with regards to software systems to provide a context and terminology for framing the
discourse on software architectures and sustainability. Focusing on the capacity of software
architectures and architectural design choices to endure over time, it highlights some of the
recent research trends and approaches with regards to explicitly addressing sustainability in
the context of software architectures. Contribution The principal aim of this article is to
provide a foundation and roadmap of emerging research themes in the area of sustainable
software architectures highlighting recent trends, and open issues and research challenges.

J. W. Kruize et al. stated that the smart farming is a management style that includes smart
monitoring, planning and control of agricultural processes. This management style requires
the use of a wide variety of software and hardware systems from multiple vendors. Adoption
of smart farming is hampered because of a poor interoperability and data exchange between
ICT components hindering integration. Software Ecosystems is a recent emerging concept in
software engineering that addresses these integration challenges. Currently, several Software
Ecosystems for farming are emerging. To guide and accelerate these developments, this paper
provides a reference architecture for Farm Software Ecosystems. This reference architecture
should be used to map, assess design and implement Farm Software Ecosystems. A key
feature of this architecture is a particular configuration approach to connect ICT components
developed by multiple vendors in a meaningful, feasible and coherent way. The reference
architecture is evaluated by verification of the design with the requirements and by mapping
two existing Farm Software Ecosystems using the Farm Software Ecosystem Reference
Architecture. This mapping showed that the reference architecture provides insight into Farm
Software Ecosystems as it can describe similarities and differences. A main conclusion is that
the two existing Farm Software Ecosystems can improve configuration of different ICT
components. Future research is needed to enhance configuration in Farm Software
Ecosystems.

DISCUSSION

The three approaches that have been discussed in the previous sections, according to the
criteria, use the same terminology, only the names of the terms change, showing the lack of a
unified language. They share the fact of considering that the quality characteristics wanted or
expected high-level quality characteristics in a software product must be defined and
quantified measured in order to be assured. External and internal quality views are
considered. The high-level characteristics, that may affect the exit or failure of the final
system, cannot in general be directly measured. They must be “refined” in order to get the
measurable aspects. Moreover, these measures are used to link or relate the low-level

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 25

characteristics, which are measurable, with the high-level characteristics. In this way, a trade-
off to detect the dependencies among these characteristics is established. The definition of
these links is always performed empirically or on the basis of experience. On the other hand,
the approaches differ mostly on the stage of development where the quality model is applied.
However, an important issue is that at design stage, all the approaches could be used. From
our point of view, this stage is very important because it concerns the definition of the system
architecture, characterized by non-functional properties. Nevertheless the ABAS approach,
specific to this stage, does not offer any guideline. Finally, an important research issue is the
extension of the software development methods that do not consider explicitly a quality
model, with one of the three quality model approaches studied. Those offering guidelines
should be better candidates, or the use of an extended ABAS with ISO 9126 or Dromey’s
design model. Moreover, since these approaches lack a common language, the specification
of the quality models studied using notational standards, such as UML (Unified Modelling
Language) should be considered. In UML is used to model architectures of real-time systems,
where the selection of an architecture meeting precise quality requirements is crucial.

CONCLUSION

This paper presents an approach to integrate frameworks with domain specific languages
(DSL). We argue that DSLs allows the domain expert to formalize the specification of a
software solution immediately without worrying about implementation decisions and the
framework complexity. The code for the variation points is specified in DSLs that are
transformed (or compiled) to generate the framework instantiation code. During the
transformation the framework instantiation restrictions may be verified. The case studies have
shown that the proposed approach may enhance very much the instantiation process. It is
important to note that DSLs can be transformed into other DSLs, thus creating a domain
network, in a way similar to that described in, providing an easy implementation path for new
DSLs. An approach for the derivation of the framework instantiation restrictions based on
UML specifications is shown in, as well as tool support for the transformations. We are now
working on a more elaborated version of the supporting environment, based on UML case
tools and specific transformational systems.

REFERENCES

[1] M. Ozkaya en F. Erata, “A survey on the practical use of UML for different software
architecture viewpoints”, Inf. Softw. Technol., vol 121, bl 106275, Mei 2020, doi:
10.1016/j.infsof.2020.106275.

[2] T. Gu, M. Lu, L. Li, en Q. Li, “An Approach to Analyze Vulnerability of Information
Flow in Software Architecture”, Appl. Sci., vol 10, no 1, bl 393, Jan 2020, doi:
10.3390/app10010393.

[3] A. Baabad, H. B. Zulzalil, S. Hassan, en S. B. Baharom, “Software architecture
degradation in open source software: A systematic literature review”, IEEE Access.
2020. doi: 10.1109/ACCESS.2020.3024671.

[4] M. M. Soto-Cordova, S. León-Cárdenas, K. Huayhuas-Caripaza, en R. M. Sotomayor-
Parian, “Proposal for a software architecture as a tool for the fight against corruption in
the regional governments of Peru”, Int. J. Adv. Comput. Sci. Appl., 2020, doi:
10.14569/IJACSA.2020.0110786.

[5] S. Farshidi, S. Jansen, en J. M. van der Werf, “Capturing software architecture
knowledge for pattern-driven design”, J. Syst. Softw., 2020, doi:

IJGIMR: Volume: 1, Issue No: 1, (January-June) 2025

International Journal of Global Innovations and Modern Research (IJGIMR) Page | 26

10.1016/j.jss.2020.110714.

[6] S. Moaven en J. Habibi, “A fuzzy-AHP-based approach to select software architecture
based on quality attributes (FASSA)”, Knowl. Inf. Syst., 2020, doi: 10.1007/s10115-
020-01496-7.

[7] et al., “The Principle of Architecture First in Software Project Management Minimizes
the Cost of Software Development Process: A Review”, Int. J. Innov. Technol. Explor.

Eng., 2020, doi: 10.35940/ijitee.a8154.1110120.

[8] O. Sievi-Korte, I. Richardson, en S. Beecham, “Software architecture design in global
software development: An empirical study”, J. Syst. Softw., 2019, doi:
10.1016/j.jss.2019.110400.

[9] J. Cruz-Benito, F. J. García-Peñalvo, en R. Therón, “Analyzing the software
architectures supporting HCI/HMI processes through a systematic review of the
literature”, Telemat. Informatics, 2019, doi: 10.1016/j.tele.2018.09.006.

[10] Q. Q. G. Wuniri, X. P. Li, S. L. Ma, J. H. Lü, en S. Q. Zhang, “Modelling and
Verification of High-order Typed Software Architecture and Case Study”, Ruan Jian

Xue Bao/Journal Softw., 2019, doi: 10.13328/j.cnki.jos.005749.

[11] C. Ellwein, A. Elser, en O. Riedel, “Production planning and control systems - A new
software architecture Connectivity in target”, 2019. doi: 10.1016/j.procir.2019.02.089.

